\(\int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx\) [579]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 130 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a x}{2}+\frac {5 a \text {arctanh}(\cos (c+d x))}{2 d}-\frac {5 a \cos (c+d x)}{2 d}-\frac {5 a \cos ^3(c+d x)}{6 d}+\frac {5 a \cot (c+d x)}{2 d}-\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}-\frac {5 a \cot ^3(c+d x)}{6 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d} \]

[Out]

5/2*a*x+5/2*a*arctanh(cos(d*x+c))/d-5/2*a*cos(d*x+c)/d-5/6*a*cos(d*x+c)^3/d+5/2*a*cot(d*x+c)/d-1/2*a*cos(d*x+c
)^3*cot(d*x+c)^2/d-5/6*a*cot(d*x+c)^3/d+1/2*a*cos(d*x+c)^2*cot(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2917, 2671, 294, 308, 209, 2672, 212} \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a \text {arctanh}(\cos (c+d x))}{2 d}-\frac {5 a \cos ^3(c+d x)}{6 d}-\frac {5 a \cos (c+d x)}{2 d}-\frac {5 a \cot ^3(c+d x)}{6 d}+\frac {5 a \cot (c+d x)}{2 d}-\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d}+\frac {5 a x}{2} \]

[In]

Int[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(5*a*x)/2 + (5*a*ArcTanh[Cos[c + d*x]])/(2*d) - (5*a*Cos[c + d*x])/(2*d) - (5*a*Cos[c + d*x]^3)/(6*d) + (5*a*C
ot[c + d*x])/(2*d) - (a*Cos[c + d*x]^3*Cot[c + d*x]^2)/(2*d) - (5*a*Cot[c + d*x]^3)/(6*d) + (a*Cos[c + d*x]^2*
Cot[c + d*x]^3)/(2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cos ^3(c+d x) \cot ^3(c+d x) \, dx+a \int \cos ^2(c+d x) \cot ^4(c+d x) \, dx \\ & = -\frac {a \text {Subst}\left (\int \frac {x^6}{\left (1-x^2\right )^2} \, dx,x,\cos (c+d x)\right )}{d}-\frac {a \text {Subst}\left (\int \frac {x^6}{\left (1+x^2\right )^2} \, dx,x,\cot (c+d x)\right )}{d} \\ & = -\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d}+\frac {(5 a) \text {Subst}\left (\int \frac {x^4}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 d}-\frac {(5 a) \text {Subst}\left (\int \frac {x^4}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 d} \\ & = -\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d}+\frac {(5 a) \text {Subst}\left (\int \left (-1-x^2+\frac {1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{2 d}-\frac {(5 a) \text {Subst}\left (\int \left (-1+x^2+\frac {1}{1+x^2}\right ) \, dx,x,\cot (c+d x)\right )}{2 d} \\ & = -\frac {5 a \cos (c+d x)}{2 d}-\frac {5 a \cos ^3(c+d x)}{6 d}+\frac {5 a \cot (c+d x)}{2 d}-\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}-\frac {5 a \cot ^3(c+d x)}{6 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d}+\frac {(5 a) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 d}-\frac {(5 a) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 d} \\ & = \frac {5 a x}{2}+\frac {5 a \text {arctanh}(\cos (c+d x))}{2 d}-\frac {5 a \cos (c+d x)}{2 d}-\frac {5 a \cos ^3(c+d x)}{6 d}+\frac {5 a \cot (c+d x)}{2 d}-\frac {a \cos ^3(c+d x) \cot ^2(c+d x)}{2 d}-\frac {5 a \cot ^3(c+d x)}{6 d}+\frac {a \cos ^2(c+d x) \cot ^3(c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.23 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.34 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a (c+d x)}{2 d}-\frac {9 a \cos (c+d x)}{4 d}-\frac {a \cos (3 (c+d x))}{12 d}+\frac {7 a \cot (c+d x)}{3 d}-\frac {a \csc ^2\left (\frac {1}{2} (c+d x)\right )}{8 d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d}+\frac {5 a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{2 d}-\frac {5 a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d}+\frac {a \sec ^2\left (\frac {1}{2} (c+d x)\right )}{8 d}+\frac {a \sin (2 (c+d x))}{4 d} \]

[In]

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(5*a*(c + d*x))/(2*d) - (9*a*Cos[c + d*x])/(4*d) - (a*Cos[3*(c + d*x)])/(12*d) + (7*a*Cot[c + d*x])/(3*d) - (a
*Csc[(c + d*x)/2]^2)/(8*d) - (a*Cot[c + d*x]*Csc[c + d*x]^2)/(3*d) + (5*a*Log[Cos[(c + d*x)/2]])/(2*d) - (5*a*
Log[Sin[(c + d*x)/2]])/(2*d) + (a*Sec[(c + d*x)/2]^2)/(8*d) + (a*Sin[2*(c + d*x)])/(4*d)

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.18

method result size
derivativedivides \(\frac {a \left (-\frac {\cos ^{7}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{2}-\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{6}-\frac {5 \cos \left (d x +c \right )}{2}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a \left (-\frac {\cos ^{7}\left (d x +c \right )}{3 \sin \left (d x +c \right )^{3}}+\frac {4 \left (\cos ^{7}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )}+\frac {4 \left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )}{d}\) \(154\)
default \(\frac {a \left (-\frac {\cos ^{7}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{2}-\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{6}-\frac {5 \cos \left (d x +c \right )}{2}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a \left (-\frac {\cos ^{7}\left (d x +c \right )}{3 \sin \left (d x +c \right )^{3}}+\frac {4 \left (\cos ^{7}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )}+\frac {4 \left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )}{d}\) \(154\)
parallelrisch \(\frac {a \left (\csc ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (60 \left (-3 \sin \left (d x +c \right )+\sin \left (3 d x +3 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-60 d x \sin \left (3 d x +3 c \right )+180 d x \sin \left (d x +c \right )+65 \sin \left (3 d x +3 c \right )+24 \sin \left (4 d x +4 c \right )+\sin \left (6 d x +6 c \right )+30 \cos \left (d x +c \right )-65 \cos \left (3 d x +3 c \right )+3 \cos \left (5 d x +5 c \right )-195 \sin \left (d x +c \right )-75 \sin \left (2 d x +2 c \right )\right )}{768 d}\) \(163\)
risch \(\frac {5 a x}{2}-\frac {i a \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {9 a \,{\mathrm e}^{i \left (d x +c \right )}}{8 d}-\frac {9 a \,{\mathrm e}^{-i \left (d x +c \right )}}{8 d}+\frac {i a \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {a \left (18 i {\mathrm e}^{4 i \left (d x +c \right )}+3 \,{\mathrm e}^{5 i \left (d x +c \right )}-24 i {\mathrm e}^{2 i \left (d x +c \right )}+14 i-3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}+\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d}-\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d}-\frac {a \cos \left (3 d x +3 c \right )}{12 d}\) \(187\)
norman \(\frac {\frac {a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a}{24 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {25 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}-\frac {25 a \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}-\frac {a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {a \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {5 a x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {15 a x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {15 a x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {5 a x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {55 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}-\frac {65 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {75 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {5 a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}\) \(279\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^4*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(-1/2/sin(d*x+c)^2*cos(d*x+c)^7-1/2*cos(d*x+c)^5-5/6*cos(d*x+c)^3-5/2*cos(d*x+c)-5/2*ln(csc(d*x+c)-cot(
d*x+c)))+a*(-1/3/sin(d*x+c)^3*cos(d*x+c)^7+4/3/sin(d*x+c)*cos(d*x+c)^7+4/3*(cos(d*x+c)^5+5/4*cos(d*x+c)^3+15/8
*cos(d*x+c))*sin(d*x+c)+5/2*d*x+5/2*c))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.40 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {6 \, a \cos \left (d x + c\right )^{5} - 40 \, a \cos \left (d x + c\right )^{3} - 15 \, {\left (a \cos \left (d x + c\right )^{2} - a\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 15 \, {\left (a \cos \left (d x + c\right )^{2} - a\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 30 \, a \cos \left (d x + c\right ) + 2 \, {\left (2 \, a \cos \left (d x + c\right )^{5} - 15 \, a d x \cos \left (d x + c\right )^{2} + 10 \, a \cos \left (d x + c\right )^{3} + 15 \, a d x - 15 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(6*a*cos(d*x + c)^5 - 40*a*cos(d*x + c)^3 - 15*(a*cos(d*x + c)^2 - a)*log(1/2*cos(d*x + c) + 1/2)*sin(d*
x + c) + 15*(a*cos(d*x + c)^2 - a)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 30*a*cos(d*x + c) + 2*(2*a*cos(
d*x + c)^5 - 15*a*d*x*cos(d*x + c)^2 + 10*a*cos(d*x + c)^3 + 15*a*d*x - 15*a*cos(d*x + c))*sin(d*x + c))/((d*c
os(d*x + c)^2 - d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**4*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.94 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {{\left (4 \, \cos \left (d x + c\right )^{3} - \frac {6 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + 24 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a - 2 \, {\left (15 \, d x + 15 \, c + \frac {15 \, \tan \left (d x + c\right )^{4} + 10 \, \tan \left (d x + c\right )^{2} - 2}{\tan \left (d x + c\right )^{5} + \tan \left (d x + c\right )^{3}}\right )} a}{12 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*((4*cos(d*x + c)^3 - 6*cos(d*x + c)/(cos(d*x + c)^2 - 1) + 24*cos(d*x + c) - 15*log(cos(d*x + c) + 1) +
15*log(cos(d*x + c) - 1))*a - 2*(15*d*x + 15*c + (15*tan(d*x + c)^4 + 10*tan(d*x + c)^2 - 2)/(tan(d*x + c)^5 +
 tan(d*x + c)^3))*a)/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.69 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {3 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 180 \, {\left (d x + c\right )} a - 180 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - 81 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {110 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 111 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 240 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 273 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 306 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 253 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 72 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}^{3}}}{72 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/72*(3*a*tan(1/2*d*x + 1/2*c)^3 + 9*a*tan(1/2*d*x + 1/2*c)^2 + 180*(d*x + c)*a - 180*a*log(abs(tan(1/2*d*x +
1/2*c))) - 81*a*tan(1/2*d*x + 1/2*c) + (110*a*tan(1/2*d*x + 1/2*c)^9 + 9*a*tan(1/2*d*x + 1/2*c)^8 - 111*a*tan(
1/2*d*x + 1/2*c)^7 + 240*a*tan(1/2*d*x + 1/2*c)^6 - 273*a*tan(1/2*d*x + 1/2*c)^5 + 306*a*tan(1/2*d*x + 1/2*c)^
4 - 253*a*tan(1/2*d*x + 1/2*c)^3 + 72*a*tan(1/2*d*x + 1/2*c)^2 - 9*a*tan(1/2*d*x + 1/2*c) - 3*a)/(tan(1/2*d*x
+ 1/2*c)^3 + tan(1/2*d*x + 1/2*c))^3)/d

Mupad [B] (verification not implemented)

Time = 9.92 (sec) , antiderivative size = 310, normalized size of antiderivative = 2.38 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d}-\frac {-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+49\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-\frac {80\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+67\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-34\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {121\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}-8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a}{3}}{d\,\left (8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+24\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+24\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\right )}-\frac {9\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,d}-\frac {5\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,d}-\frac {5\,a\,\mathrm {atan}\left (\frac {25\,a^2}{25\,a^2+25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{25\,a^2+25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d} \]

[In]

int((cos(c + d*x)^6*(a + a*sin(c + d*x)))/sin(c + d*x)^4,x)

[Out]

(a*tan(c/2 + (d*x)/2)^2)/(8*d) - (a/3 + a*tan(c/2 + (d*x)/2) - 8*a*tan(c/2 + (d*x)/2)^2 + (121*a*tan(c/2 + (d*
x)/2)^3)/3 - 34*a*tan(c/2 + (d*x)/2)^4 + 67*a*tan(c/2 + (d*x)/2)^5 - (80*a*tan(c/2 + (d*x)/2)^6)/3 + 49*a*tan(
c/2 + (d*x)/2)^7 - a*tan(c/2 + (d*x)/2)^8)/(d*(8*tan(c/2 + (d*x)/2)^3 + 24*tan(c/2 + (d*x)/2)^5 + 24*tan(c/2 +
 (d*x)/2)^7 + 8*tan(c/2 + (d*x)/2)^9)) - (9*a*tan(c/2 + (d*x)/2))/(8*d) + (a*tan(c/2 + (d*x)/2)^3)/(24*d) - (5
*a*log(tan(c/2 + (d*x)/2)))/(2*d) - (5*a*atan((25*a^2)/(25*a^2 + 25*a^2*tan(c/2 + (d*x)/2)) - (25*a^2*tan(c/2
+ (d*x)/2))/(25*a^2 + 25*a^2*tan(c/2 + (d*x)/2))))/d